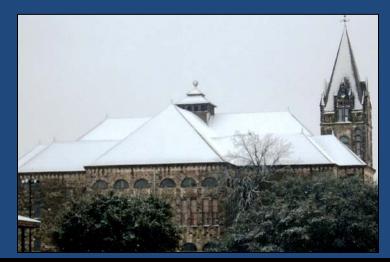


Exit Presentation: Infrared Thermography on Graphite/Epoxy

By Kayla Comeaux

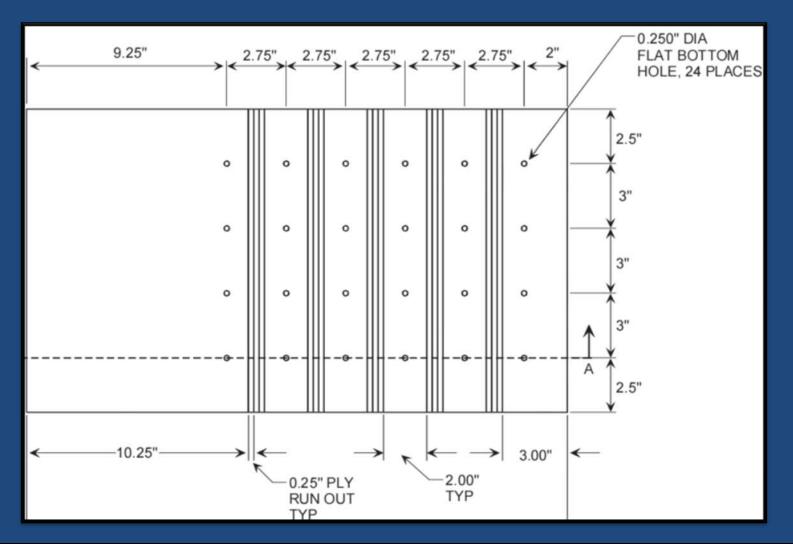
Agenda

- Personal Information
- Project
 - Objectives
 - Flat bottom hole simulation
 - Flat bottom hole experiment
 - Thin delamination simulation
- Summary
 - Skills acquired
 - Future work
 - Experiences at JSC
 - After Graduation
 - Acknowledgments


Personal Information

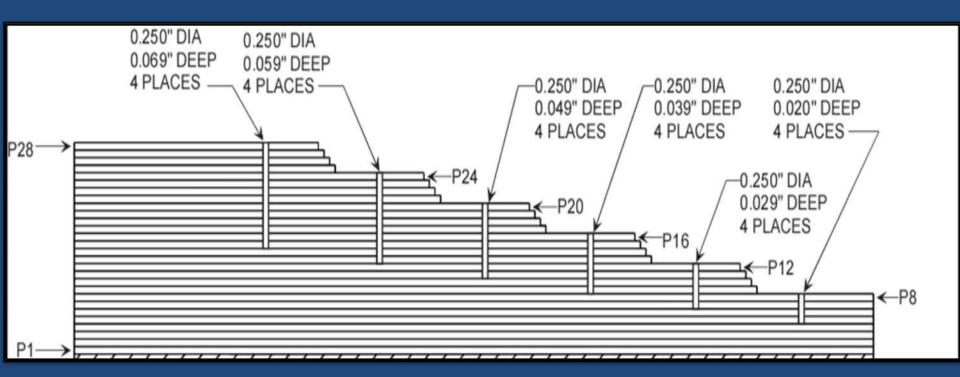
- Hometown: Friendswood, Texas
- University: Southwestern University
- Major: Mathematics
- Minor: Physics, Economics
- Pi Mu Epsilon, Chi Alpha Sigma, Pi Theta Kappa
- Soccer, Lacrosse, Choir, Tutoring
- MUST Intern

Project Objectives

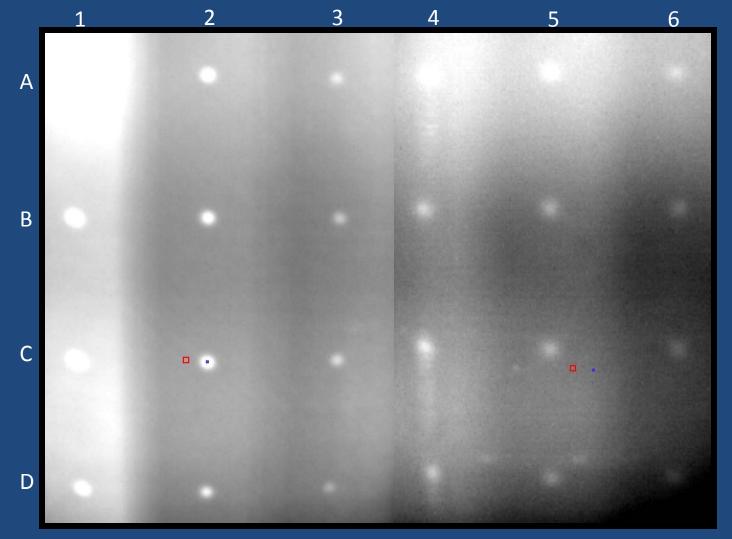


- Simulate Flash Thermography on Graphite/Epoxy
 Flat Bottom hole Specimen and thin void specimens.
- Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens
- Compare experimental results with simulation results
- Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

Composite Dimensions



Composite Dimensions



Composite Dimensions

Creating Flat Bottom Hole Simulation

- Simulation requirements
 - Uniform thickness
 - Defects completely inside composite
- Pixel size
 - Circular defects to square defects
 - Width in terms of pixels

Thermal Properties	Values
of Composite	
Density	$1150(kg/m^3)$
Heat Capacity	0.853(J/g/K)
Conductivity: Z axis	0.525(W/m/K)
Conductivity: X axis	3.38(W/m/K)
Conductivity: Y axis	3.38(W/m/K)

Thermal Properties of air	Values
Density	$1.20(kg/m^3)$
Heat Capacity	1005(J/kg/K)
Conductivity: Z axis	0.026(W/m/K)
Conductivity: X axis	0.026(W/m/K)
Conductivity: Y axis	0.026(W/m/K)

Simulation Dimensions: Column 1

Specimen	
Length, L _x , [m]	0.1115
Width, <i>L_y, [m]</i>	0.064
Heat exchange coef.	
front surface, h_F	10
[W/(m².°C)]	
Heat exchange coef.	
rear surface, h _R ,	10
[W/(m².°C)]	
Steps along X	223
Steps along Y	128
Number of layers, i	1
Number of defects	4
Length of each step in <i>X</i> , [m]	5.000E-04
Length of each step in Y, [m]	5.000E-04

Layers	Layer #1
Conductivity, $K_{x'}$ [W/(m.°C)]	0.023557
Conductivity, K _y , [W/(m.°C)]	0.023557
Conductivity, $K_{z'}$ [W/(m.°C)]	0.0043267
Heat capacity, C, [J/(kg.K)]	870.8544
Density, r, [kg/m³]	1576.2045
Thickness, L_{z_i} m	1.118E-03
Number of steps along Z, n	22
Thickness of each step in Z, [m]	5.080E-05
Thickness of each step in Z, [in]*	0.002
Timing	

Thickness of each step in <i>Z, [in]</i> *				
Timing				
Туре	Square Pulse			
Heat time, τ_h , [s]	0.005			
End time, [s]	6			
Time step, [s] 0.005				

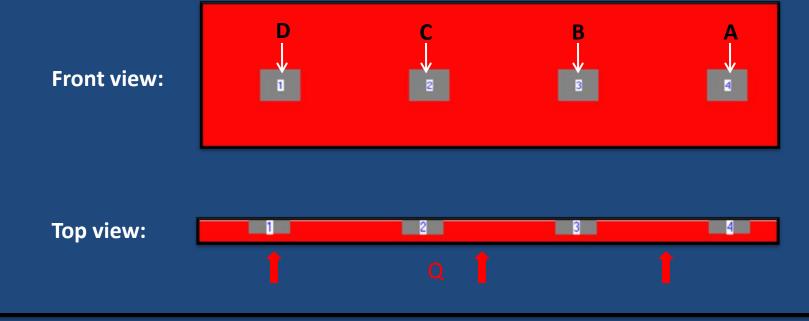
Heat Source			
Source in space	Exponential		
Max heat pulse, Q, [W/m²]	1.800E+06		
Ambient temperature, <i>T</i> , [°C]	30		
Initial temperature, T _i , [°C]	30		
Coef. of spatial distribution in X, [1/m²]	0		
Coef. of spatial distribution in Y, [1/m²]	0		
Heat source center in X, [m]	0		
Heat source center in Y, [m]	0		

Output			
Output time step, [s]	0.01		
Surface	Front		

0.000

Total thickness, L_Z , [in]*

Simulation Dimensions: <u>Column 1</u>


Thermal Properties of Defects	Defect A	Defect B	Defect C	Defect D	End of Part
Conductivity, K _x , [W/(m.°C)]	0.026	0.026	0.026	0.026	
Conductivity, K _y , [W/(m.°C)]	0.026	0.026	0.026	0.026	
Conductivity, K_z , [W/(m.°C)]	0.026	0.026	0.026	0.026	
Heat capacity, C, [J/kg.K]	1005	1005	1005	1005	
Density, <i>r,</i> [kg/m³]	1.20	1.20	1.20	1.20	
Length, L _x , [m]	5.500E-03	5.500E-03	5.500E-03	5.500E-03	
X initial point, [m]	2.950E-02	5.000E-02	7.050E-02	9.100E-02	1.115E-01
Width, L _y , [m]	5.500E-03	5.500E-03	5.500E-03	5.500E-03	
Y initial point, [m]	2.950E-02	2.950E-02	2.950E-02	2.950E-02	
Thickness, L _z , [m]	6.096E-04	7.620E-04	7.620E-04	7.620E-04	
Z initial point, [m]	5.080E-04	3.556E-04	3.556E-04	3.556E-04	

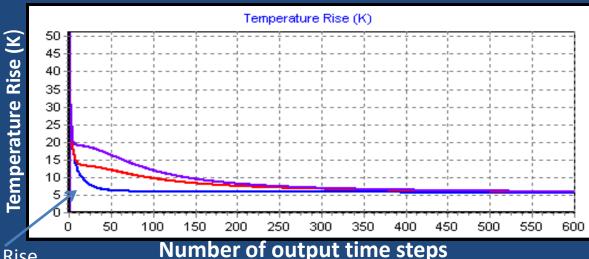
Flat Bottom Hole Simulation: Column 1

Simulation size



Data from Flat Bottom Hole Simulation: Column 1

Infrared Thermography Simulation of 0.044 Inch
Thick Graphite/Epoxy Composite


Simulation Results: Temperature v. Time Image

- Shows the difference in temperature.
- Blue curve is reference point
- X, Y : Coordinates defect's center on simulation

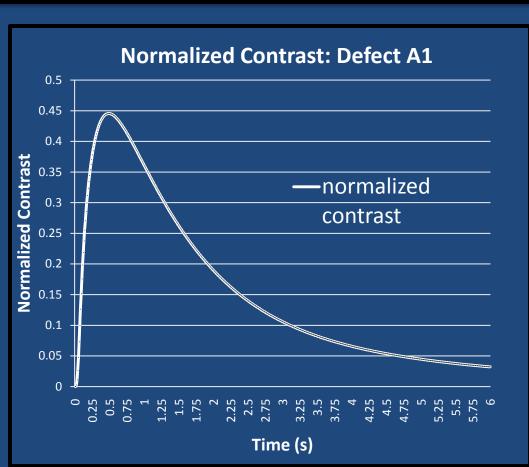
Num	Х	У	Color
v 1	106	65	
v 2	0	0	
v 3	65	65	
v 4	147	65	
у 5	188	65	

Temperature Rise (K)

Temperature Rise for Reference point

(Output time step 0.010000s)

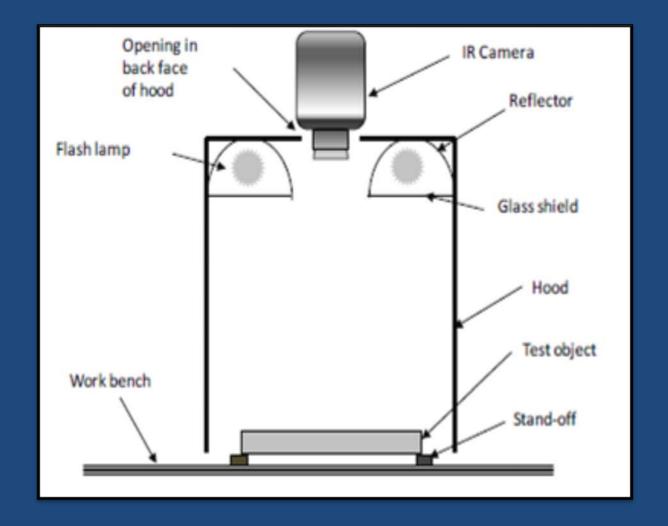
Normalizing Data and Graphing



- Collect data from Temperature v. Time graph
- Convert text file to excel spreadsheet

Normalized contrast:

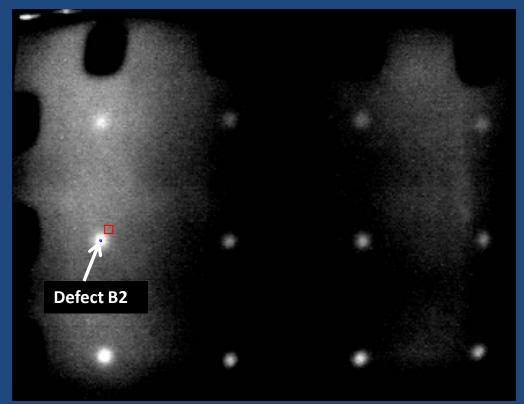
$$\frac{(T_{i}-T_{i_{0}})-(T_{r}-T_{r_{0}})}{(T_{i}-T_{i_{0}})+(T_{r}-T_{r_{0}})}$$


T = Temperature for simulation,
Pixel intensity for experimental IR data

Experimental Set-up

Frames of Infrared Thermography Evaluation

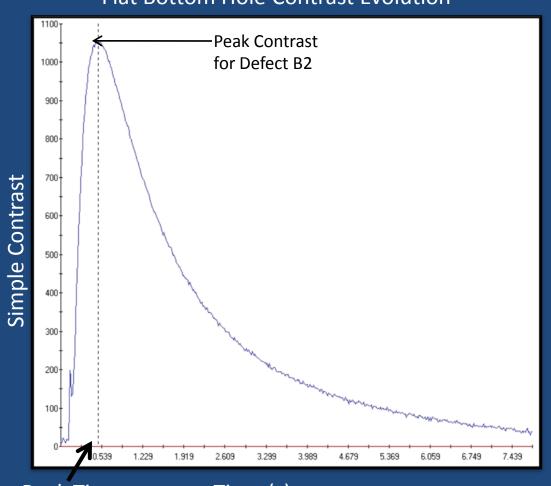
Defects A-D in Columns 1-3



Experimental Data

Image Window: Flat Bottom Hole

- Reference point
- Point of Interest
- Different sizes



Simple Contrast

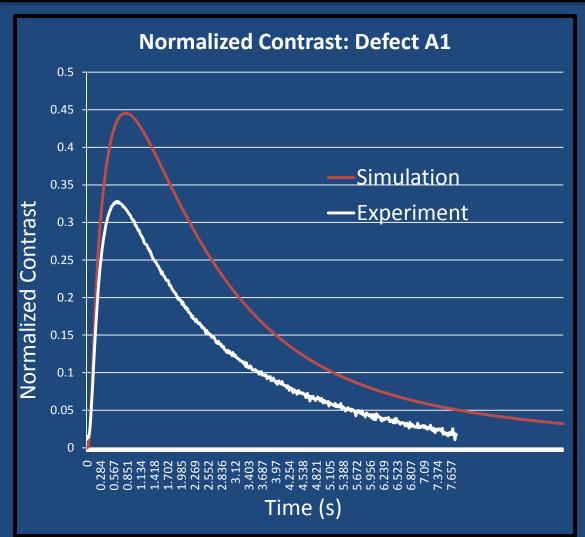
Flat Bottom Hole Contrast Evolution

- Finding maximum simple contrast
- Saving data as text file
- Transporting data to Excel
- Creating Normalized contrast

Time (s)

Calculating and Graphing Normalized Contrast

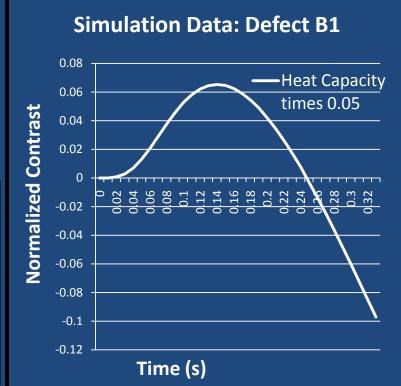
 Average pre-flash temperatures for both reference point and point of interest


 Use averages as initial temperature

Time	Reference Point	Point of Interest			
-0.15	7240	7249			
-0.133	7241	72 53			
-0.117	7240	7249			
-0.1	7240	7249			
-0.083	7239	7251			
-0.067	7240	7254			
-0.05	7239	7247			
-0.033	7241	7255			
-0.017	7239	7250			
	7239.889	7250.778			
			Reference Point*	Point of Interest*	Normalized Contrast
0	15314	15210	8074.111	7959.222	-0.00717
0.017	12669	12572	5429.111	5321.222	-0.01004
0.033	11469	11406	4229.111	4155.222	-0.00881
0.05	10781	10742	3541.111	3491.222	-0.00709
0.067	10335	10313	3095.111	3062.222	-0.00534
0.083	10012	9992	2772.111	2741.222	-0.0056
0.1	9772	9758	2532.111	2507.222	-0.00494

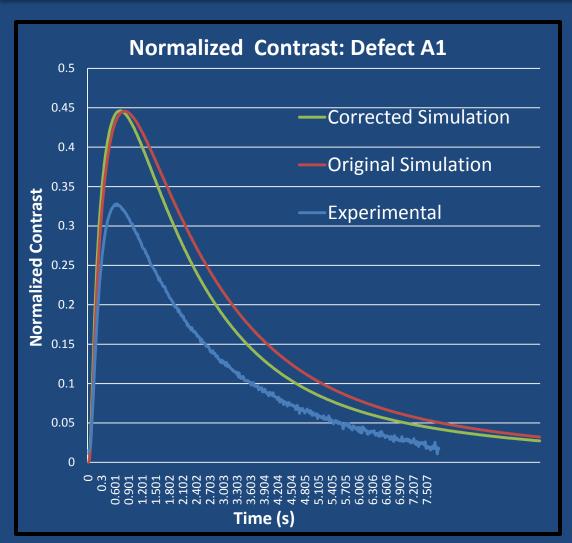
Comparison and Correction of Simulation

- The Normalized contrast for the original simulation and experimental data
- Analysis
- Peak Contrast
- Peak Time
- Correction of simulation data to more accurately portray experimental data



Correction of Simulation

- Diffusivity: $\alpha = \kappa / (\rho \times C)$
- Change properties of material
 - Change Specific Heat
 - Change in Conductivity
 - Could change Density
- Final Decision


Thermal Properties	Original	Final Values
of Composite	Values	
Density	$1150(kg/m^3)$	$1150(kg/m^3)$
Heat Capacity	0.853(J/g/K)	0.853(J/g/K)
Conductivity: Z axis	0.525(W/m/K)	1.28(W/m/K)
Conductivity: X axis	3.38(W/m/K)	3.85(W/m/K)
Conductivity: Y axis	3.38(W/m/K)	3.85(W/m/K)

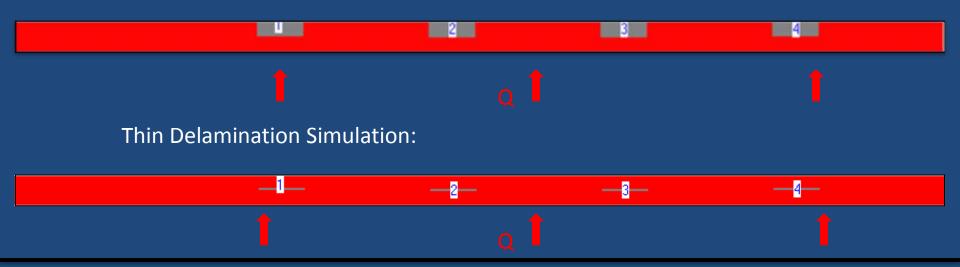
Corrected Simulation

Corrected simulation

 Comparison between original simulation, corrected simulation, and experimental data

Sources of Differences

- Simulation contrast is based on temperature versus time.
 Experimental contrast is based on pixel intensity versus time.
- Experimental Flash vs. Simulation Flash
 - Experimental flash envelope has a sharp rise and slow decay
 - Simulation flash is a square pulse
- Experimental factors
 - Experimental data is more sensitive to pixel size. Get smaller pixel intensity for a larger pixel
 - Uneven flash causes some lateral heat flow
 - Part has a surface texture causing lateral heat flow
- Emissivity
 - The specimen emissivity was measured to be 0.9 and provides lower (< 5%) experimental contrast
- Simulation inaccuracies (model approximations, boundary condition approximations, no lateral heat flow)



Creating Thin Delaminations

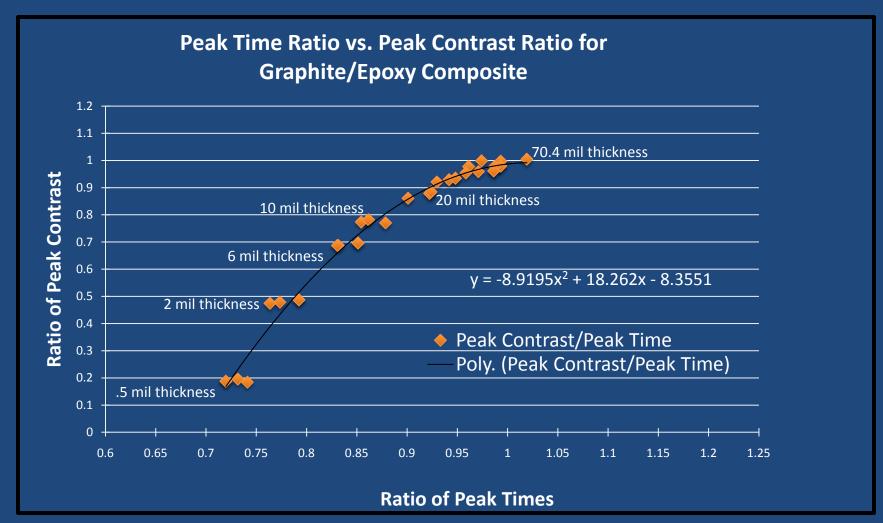
- Change depths of the defects, but leave the initial points unchanged.
- Input data into ThermoCalc-6L
- Run simulation

Flat Bottom Hole Simulation:

Collecting Data

- Same as for the flat bottom hole simulation
 - Collect data from Temperature v. Time graph for each defect
 - Convert the text file to excel spreadsheet compatible
 - Generate normalized contrast graph

Comparison of Simulations


Comparing flat bottom hole simulation to thin delamination simulation

- Compare and graph the peak contrast ratio and peak time ratio
 - Thin delamination/Flat bottom hole

Peak Contrast Ratio and Peak Time Ratio

Future Work

- Make controlled impacts to make thin delaminations
- Evaluate delaminations with Infrared Thermography
- Evaluate delaminations with Ultrasonic Techniques
- Section the specimen at delaminations
- Determine actual size of delaminations
- Compare actual results with simulated results
- Determine accuracy of the simulation

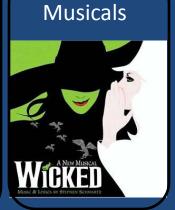
Skills Acquired

- Learned Thermodynamics
 - Theory and application
 - IR temperature measurement
- Infrared Thermography NDE
 - Simulation
 - IR Experimental data acquisition and analysis
- Eddy Current
- Ultrasonic Testing
- Time management
- Work hours
- Technical paper

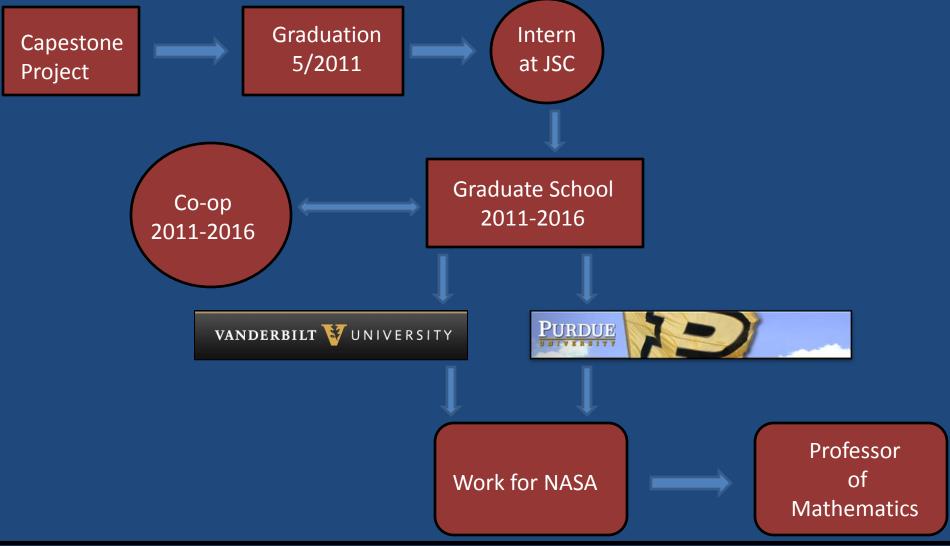
Experiences at JSC

Building 14:


Boom Tower



30


Day of Service

After Graduation

Acknowledgements

- Parents and Family
- Mentors: Ajay Koshti & David Stanley
- Ovidio Olveras, Eddie Pompa, Norman Ruffino, Rodrigo Devivar, John Figert, Budd Castner, Mike Kocurek, Denise Plantier, Erica Worthy, Joseph Prather
- MUST Point of Contact: Cornelius Johnson

Exit Presentation: Infrared Thermography on Graphite/Epoxy

Thank You